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1 Motivation

When you're faced with a complicated function in physics�say a potential en-
ergy curve, a complicated dispersion relation, or a trigonometric function in an
equation of motion�it often helps to approximate it by a simple polynomial.
The tool that lets us do this systematically is the Taylor expansion.

2 Taylor Expansion

The idea of a Taylor expansion is to provide a rational approach to approximate
a complicated function with a polynomial.

f (x) =

∞∑
n=0

an (x− x0)
n

where we are interested in describing the function in a neighborhood of the
reference point x0, and we need to determine the coe�cients ai such that our
polynomial approximates the function as well as possible. In the following we
assume that the function f(x) can be di�erentiated as many times as needed.
To see we can obtain the coe�cients lets see what happens if we set x = x0

f (x0) =

∞∑
n=0

an (x0 − x0)
n

= a0

and we have determined the zero order coe�cient

a0 = f (x0)

now we di�erentiate both sides (once) and obtain

f ′ (x) =

∞∑
i=1

n× an × (x− x0)
n−1
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where the lower index limit was adjusted to re�ect that the derivative of a
function is zero. Now we evaluate this expression for x = x0

f ′ (x0) =

∞∑
n=1

n× ai × (x0 − x0)
n−1

1× a1

and the linear coe�cient can be obtained from the derivative

a1 = f ′ (x0)

which suggests (correctly) that all coe�cients can be obtained from the deriva-
tives of the function at the reference point of interest. And you can show that
the general formula is

an =
f (n) (x0)

n!

and the Taylor expansion itself is

f (x) =

∞∑
n=0

f (n) (x0)

n!
(x− x0)

n

if we truncated the Taylor expansion at some power, we obtain a Taylor poly-
nomial. Since it is a �nite approximation to a function it will in general not be
a perfect match. We indicate this truncation error as follows

f (x) =

N∑
n=0

f (n) (x0)

n!
(x− x0)

n
+O

(
xN+1

)
where the truncation error,O

(
xN+1

)
, corresponds to the lowest non-vanishing

order that we neglected in our truncated Taylor polynomial. For example

f (x) =

2∑
n=0

an (x− x0)
n
+O

(
x3

)
if you can show that the x3 term is absent in the Taylor polynomial than you
need to adjust the power of the error to re�ect this knowledge.

3 Taylor Expansion Examples

3.1 exp(x), about x0=0

we follow the machinery detailed in the previous section to compute the Taylor
expansion of

f(x) = exp(x)
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compute the needed derivatives and �nd (0! = 1)

an =
1

n!

f (x) =

∞∑
n=0

1

n!
xn

= 1 + x+
x2

2
+

x3

6
+ · · ·

as a sanity check we notice that exp(0) = f(0) = 1, as it must be. We also note
that a1 is positive, suggesting a positive slope at our reference point, consistent
with the fact that exp(x) has a positive slope everywhere.

3.2 sin(x) , about x0 = 0

and here is the Taylor expansion for sin(x) with a reference point x0 = 0

f(x) = sin(x)

we �nd that all even powered derivatives are zero at x0 = 0. Thus, only odd
powers contribute

a2n = 0

a2n+1 =
(−1)

n

(2n+ 1)!

f (x) =

∞∑
n=0

(−1)
n

(2n+ 1)!
x2n+1

f(x) = x− x3

6
+

x5

120
+ · · ·

we note that the n = 0 term corresponds to the linear term in the polynomial,
and sin(x) behaves about x = 0 approximately as a straight line with slope 1.
The next term has a negative coe�cient, consistent with the observation that
sin(x) turns over as the argument increases.

3.3 cos(x), about x0 = 0

similarly, we �nd for cos(x) with a reference point x0 = 0

f(x) = cos(x)
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and this time we �nd that all odd powered derivative are zero, leaving only odd
powers in the Taylor expansion

a2n =
(−1)

n

(2n)!

a2n−1 = 0

f (x) =

∞∑
n=0

(−1)
n

(2n)!
x2n

f(x) = 1− x2

2
+

x4

24
− · · ·

3.4 Taylor Expansion and Symmetry

As we just saw, for sin(x), an odd function (f(−x) = −f(x)), only odd powers
contribute to the Taylor expansion, and for cos(x), and even function (f(−x)−
f(x)), only even powers appear. The observation holds for all odd functions
about the reference point. First adjust the argument to account for arbitrary
reference points, x0, and de�ne the deviation from the reference point:

ε = x− x0

f(−ε) = −f(ε)

f (−ε) =

∞∑
n=0

an (−ε)
n
= −

∞∑
n=0

anε
n = −f(ε)

∞∑
n=0

an (−1)
n
εn = −

∞∑
n=0

anε
n

and comparing powers one by one, we �nd that even powers on the left and
right side have opposite signs, which can only be satis�ed if the coe�cient is
zero. Thus, the only terms left will be odd powers, consistent with the explicit
calculation we did before. You can use the same strategy to show that for even
functions about the reference point only even monomial powers remain. Finally,
in the Taylor expansion for exp(x), a function of mixed odd/even character, all
powers contribute to the Taylor polynomial.

4 Taylor Expansions in Physics

4.1 Pendulum

One of the most famous examples is the small angle approximation used to
describe small amplitude oscillations of a pendulum. You can show that the
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potential energy of such a pendulum can be written as

V (θ) = mgL (1− cos(θ))

∼ 1

2
mgLθ2

in words, for small oscillations, the pendulum performs harmonic oscillations
about its equilibrium point (θ = 0). And for the force we obtain

F (θ) = −dV

dθ
= −mgLsin(θ)

= −mgLθ

a linear restoring force. I would like to emphasize that this is only true for
small enough oscillations. We also note, that while it may require in numerical
techniques for most potentials such as, V (θ), if we can justify the use of a Taylor
expansion, we may be able to determine the dynamical system behavior in this
regime analytically, as in the case of our pendulum example that reduces to the
analytically solvable problem of a linear spring.

4.2 Potential Energy Wells

Lets consider a general potential well and its Taylor expansion

V (x) = V0 +
dV

dx
(x− x0) +

1

2

d2V

dx2
(x− x0)

2 + · · ·

If we are interested in the dynamical behavior about the equilibrium point, x_0,
we notice that the force (by de�nition) at the equilibrium must disappear

0 = F (x) = −dV

dx

and the expression simpli�es to

V (x) = V0 +
1

2

d2V

dx2
(x− x0)

2 +O
(
(x− x0)

3
)

and neglecting higher order terms this is again nothing else than harmonic
motion about equilibrium. And vice versa, if we can measure the frequency of
oscillations, we can learn something about the potential energy landscape of
the system. To be more speci�c we de�ne ε = x − x0 as the deviation from
equilibrium, and we obtain for the force

F (ε) = −d2V

dx2
ε

5



and from Newton's 2nd law we obtain

d2ε

dt2
= − 1

m

d2V

dx2
ε

= −ω2ε

and we obtain the desired relationship between frequency of oscillation and
potential energy variation

ω =

√
1

m

d2V

dx2

and as a sanity check you can con�rm by dimensional analysis that the units
are consistent.

5 Conclusion

� Taylor expansions let you replace complicated functions with simple poly-
nomials valid near a point.

� Truncating after a few terms can give you excellent approximations for
small deviations.

� In physics and engineering, Taylor expansion are widely used, for example
in the harmonic approximation around equilibrium, and series expansions
to approximate dynamical behavior of complicated interacting systems.

� In mathematics Taylor expansion are for example used to approximate
solutions to di�erential equations.

6 Exercises

1. Consider the Taylor expansion of sin(x) about x0 = 0. How far from
the reference point can you move such that the lowest order (linear) term
describes sin(x) to within 1 and 0.1? Now repeat the exercise but retain
the two lowest terms in the Taylor expansion (linear and cubic). Compare
and discuss the value ranges you �nd.

2. Assume that the function f(x) is a polynomial, what is its Taylor polyno-
mial?

3. Proof that the Taylor expansion for an even function contains only even
power monomials.

4. Compute the Taylor expansion of tan(x). Do all powers occur in the �nal
expression? Discuss.

6


