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1 Motivation

The Baker�Campbell�Hausdor� (BCH) formula is worth studying because it's
the precise tool that tells you what happens when you compose actions gener-
ated by non-commuting operators, a question that is relevant to many prob-
lems in physics and engineering. In quantum mechanics it turns products of
time-evolution or displacement operators into a single e�ective generator, with
commutator terms that quantify interference and higher-order corrections; in
numerical simulation it explains the accuracy of operator-splitting schemes (i.e.
Lie�Trotter factorization) by exposing the leading error terms; and in signal
processing and electromagnetics it clari�es when exponentials of matrices can
be merged without penalty. Here is the famous BCH formula

eA · eB = eA+B+ 1
2 [A,B]+ 1

12 ([A,[A,B]]+[B,[B,A]])+···

where

[A,B] ≡ AB −BA

We immediately note, that if the commutator, [A,B] = 0, the complicated
nested commutator terms in the BCH drop out and we obtain

aAeB = eA+B

the expression we are used to from algebra. is the standard commutator between
the two operators. In this primer we will proof the BCH formula.

2 Commutators Revisited

We just saw that the complexity of evaluating BCH relies critically on the value
of the commutator

[A,B] ≡ AB −BA

and it is prudent to discuss a few of its properties

[A+ C,B] = [A,B] + [C,B]
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which follows directly by resolving the commutator and rearranging

[A+ C,B]

= (A+ C)B −B (A+ C)

= AB + CB −BA−BC

= AB −BA+ CB −BC

[A,B] + [C,B]

similarly, we can show that the same linearity holds for the 2nd argument

[A,B + C] = [A,B] + [A,C]

and if we reverse the arguments

[A,B] = −[B,A]

3 Nested Commutators and Useful Relationships

In this section we provide the groundwork for the proof of BCH.

3.1 adX, a Useful Auxiliary Function

Let's de�ne a useful auxiliary function to describe nested commutators

adX (Y ) ≡ [X,Y ]

let's pause for a moment and explore this notation further. Speci�cally lets look
at powers of the auxiliary function

adX (Y )
2

= adX ◦ adX (Y )

= adX (adX (Y ))

= [X, [X,Y ]]

in other words, powers of the auxiliary function are resolved via the chain rule,
not as regular products. This di�erence matters as we can easily con�rm by
example. Alternatively, we realize that each term in the naive product has the
same number of X and Y operators, while the (correct) chain rule resolution
only contains a single factor Y . Here is a general term:

adnX (Y ) = [X, [X, · · · [X,Y ] · · · ]]︸ ︷︷ ︸
n times
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note also that the auxiliary function is linear, and we have for example

A =
∑

An

adA(Z) = [
∑

An, Z]

=
∑

[An, Z]

=
∑

adAn
(Z)

3.2 adX for Decomposing Operator Products

Let's decompose the following operator product:

f (s) ≡ esXY e−sX

We assume that the operator exponentials are di�erentiable and we use a Tay-
lor polynomial (see primer on Taylor polynomials and series) to describe the
function f(s)

f(s) =

∞∑
n=0

sn

n!

dn

dsn
f (0)

let's compute the derivative of f(s)

d

ds
f(s) = f ′(s)

= XesXY e−sX − esXY e−sXX

= Xf(s)− f(s)X

= [X, f(s)]

= adx(f(s))

and for the next derivative

d2

ds2
f(s) = f ′′(s)

= Xf ′(s)− f ′(s)X

= [X, f ′(s)]

= adx(ads(f(s))

= adx ◦ adx(f(s))
= ad2X(f(s))

and repeatedly applying this calculation, we �nd

dn

dsn
f(s) = adnX(f(s))
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which evaluates to

dn

dsn
f(0) = adnX(f(0)) = adnX(Y )

and putting the terms back into the Taylor expansion, we obtain

f(s) =

∞∑
n=0

sn

n!

dn

dsn
f (0)

=

∞∑
n=0

sn

n!
adnX(Y )

4 Hadamard Lemma

With these preliminaries we can proof the Hadamard lemma, which states

eXY e−X = eadX ◦ Y = Y + [X,Y ] +
1

2!
[X, [X,Y ]] + · · ·

where [X,Y ] = XY − Y X is the usual commutator. Note, that the middle
expression is evaluated using the chain rule (see section 3). We realize that
all we have to do is to evaluate f(s = 1) and unpack the auxiliary function
adX following the rules outlined in section 3.1

f(s = 1) = eXY e−X

=

∞∑
n=0

1

n!
adnX(Y )

= Y + [X,Y ] +
1

2!
[X, [X,Y ]] + · · ·

= eadX ◦ Y

4.1 Corollary to the Hadamard Lemma

In preparation for the BCH proof we provide here an application of the Hadamard
lemma to express the left hand side of BCH

U(t) ≡ etAetB
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in terms of powers of the auxiliary, adX operator function

U̇(t) =
d

dt
U(t)

= AetAetB + etABetB

= AU(t) + etAB
(
e−tAetA

)
etB

= AU(t) + etABe−tAU(t)

⇒ U̇(t)U(t)−1 = A+ etABe−tA

= A+

∞∑
n=0

tn

n!
adnA(B)

5 Proof of Wilcox/Duhamel Identity

In this section we will proof the Wilcox/Duhamel identity we will use to proof
BCH

d

dt
eZ(t) =

∫ 1

0

e(1−s)Z(t)Ż(t)esZ(t)ds

However, in foresight you see that the target (operator) function Z(t) appear
on the left and on the right hand side. Thus, we will �nd our �nal function
through recursion. Let's get started by de�ning

F (s) = e(1−s)Y esX

Now, we compute the derivative

d

ds
F (s) = −Y e(1−s)Y esX + e(1−s)Y XesX

= e(1−s)Y (X − Y ) esX

and integrate ∫ 1

0

e(1−s)Y (X − Y ) esXds

=

∫ 1

0

d

ds
F (s)ds

= F (1)− F (0)

eX − eY

now we specify X = Z(t+ h) and Y = Z(t)

eZ(t+h) − eZ(t) =

∫ 1

0

e(1−s)Z(t) (Z(t+ h)− Z(t)) esZ(t+h)ds
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and we divide both sides by the increment, h, and take the limit h− > 0

lim
h−>0

eZ(t+h) − eZ(t)

h
= lim

h−>0

∫ 1

0

e(1−s)Z(t) (Z(t+ h)− Z(t))

h
esZ(t+h)ds

d

dt
eZ(t) =

∫ 1

0

e(1−s)Z(t)Ż(t)esZ(t)ds

and a corollary we will be using soon, right multiply with e−Z and simplify
using the Hadamard lemma(

d

dt
eZ(t)

)
e−Z(t) =

∫ 1

0

e(1−s)Z(t)Ż(t)esZ(t)ds e−Z(t)

=

∫ 1

0

e(1−s)Z(t)Ż(t)esZ(t)e−Z(t)ds

=

∫ 1

0

e(1−s)Z(t)Ż(t)e−(1−s)Z(t)ds

=

∫ 1

0

e(1−s)adZ Ż(t)ds

=

∞∑
k=0

1

(k + 1)!
adkZ

(
Ż
)

where in the last two steps we used the Hadamard lemma from section 4 and
performed the trivial integrals over s.

6 Proof of BCH Formula

At long last we are in a position to proof the BCH formula. We de�ne two
new functions, that mimic the structure of the BCH formula, determine a single
exponent operator function, Z(t), from from two exponential operator functions,
A and B

U(t) ≡ eZ(t)

≡ etAetB ⇒ Z(0) = 0

and put the �rst de�nition in the Wilcox/Duhamel identity from section 5

U̇U−1 =

∫ 1

0

e(1−s)adZ Ż(t)ds

=

∞∑
k=0

1

(k + 1)!
adkZ

(
Ż
)

where in the second line we have inserted a �1� in a suitable operator notation.
Now we right-multiply with U−1(t) and use the product decomposition from
section 3.2 Now, we take the second de�nition of U(t)

U(t) ≡ etAetB
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which owing to the corollary to the Hadamard lemma can be expressed as

U̇U−1 = A+

∞∑
n=0

tn

n!
adnA(B)

in essence, we have derived two conditions for U̇U−1, one dependent on A and
B, and the other dependent on our target function Z(t). Moreover, we realize
that the second equation is polynomial in t. Thus, our strategy is going to be
to write Z(t) as a polynomial in t (note that the polynomial starts with a linear
term), compute analytically the derivative Ż, put the expressions in our two
equations, and extract the �coe�cients� of Z(t) by comparing equal powers of t
on both sides.

Z(t) =

∞∑
n=1

Znt
n

Ż(t) =

∞∑
n=1

n · Znt
n−1

∞∑
k=0

1

(k + 1)!
adkZ

(
Ż
)
= A+

∞∑
n=0

tn

n!
adnA(B)

From this expression we extract power-by-power the coe�cient operator func-
tion Zn.

Order t0(n=0)

Right hand side: A+B.
Left hand side:
k =0 terms: ad0Z(Ż) = Ż, and we identify Z1as the only contributing term.
k ⩾ 1 terms: the lowest possible order is 1, and higher orders do not con-

tribute any terms.
Combining terms, we obtain: Z1 = A+B.

Order t1(n=1)

Right hand side: [A,B].
Left hand side:
k = 0 terms: ad0Z

(
Ż
)
= Ż ⇒ 2Z2.

k = 1 terms: ad1Z

(
Ż
)
= [Z, Ż],with only possible combination [Z1, Z1] = 0.

k ⩾ 2 terms: the lowest possible order is 2, and higher order terms do not
contribute any terms.

Combining terms, we obtain: Z2 = 1
2 [A,B].

Order t2(n=2)
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Right hand side: 1
2 [A, [A,B]].

Left hand side:
k = 0 terms: ad0Z

(
Ż
)
= Ż ⇒ 3Z3

k = 1 terms: 1
2ad

1
Z

(
Ż
)
= 1

2 [Z, Ż] = 1
2 [Z1t+Z2t

2+ · · · , Z1+2Z2t+3Z3t
2+

· · · ] ⇒ 1
2 ([Z1, 2Z2] + [Z2, Z1])

k ⩾ 2 terms: the lowest possible order 2 contains the commutator [Z1, Z1] =
0, all other terms are of higher order and do not contribute.

Combining terms, we obtain: 1
2 [A, [A,B]] = 3Z3 +

1
2 [Z1, Z2] = 3Z3 +

1
2 [A+

B, 1
2 [A,B]] = 3Z3 +

1
4 [A, [A,B]] + 1

4 [B, [A,B]] and we solve for Z3 and simplify
3Z3 = 1

2 [A, [A,B]] − 1
4 [A, [A,B]] − 1

4 [B, [A,B]] = 1
4 [A, [A,B]] − 1

4 [B, [A,B]] =
1
4 [A, [A,B]] + 1

4 [B, [B,A]], and �nally: Z3 = 1
12 [A, [A,B]] + 1

12 [B, [B,A]]

Higher Orders

The bookkeeping gets more involved with each order, so we stop here and
leave it to the inclined reader to explore higher orders on their own or to consult
the extensive literature on approaches to �nd the coe�cient operator function
Zn for all powers.

Combining Low Order Terms

Up to cubic nested commuter order we have derived the following formula
for the product of exponential operators

eA · eB = eA+B+ 1
2 [A,B]+ 1

12 ([A,[A,B]]+[B,[B,A]])+···

[A,B] = AB −BA

in agreement with the formula states the the beginning of this primer. This
primer showed you a pathway from commutators to Hadamard, to Wilcox/Duhamel,
and �nally to BCH via coe�cient matching�exactly the tools you will reuse in
quantum dynamics, and operator-splitting analysis.

7 Exercises

� Show: [B, [A,B]] = −[B, [B,A]].

� Derive the n = 3 term in the BCH formula.
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