Schedule PHYS476/576 "Computational Physics", Spring 2019 Instructor: Dr. Boris Kiefer

Time permitting, I provide a one-lecture overview to data mining and machine learning at the end of the semester.

DATE	TOPICS	READING	Other
		ASSIGNMENT	
R 01/17	Introduction to scientific programming/documentation,	Ch. 1; 3.5	
	scientific visualization (gnuplot), and uses of programming		
	techniques in data recovery.		
T 01/22	Machine numbers and round-off errors.	Ch. 2	
	How to compute exp(-x)?		
R 01/24	Interpolation:	Ch. 3	Pre-reqs
	Lagrange polynomial.		due
	Richardson-deferred –extrapolation.		
T 01/29	Numerical Differentiation:	Ch. 3	
	Finite differences, error estimation, ODE.		
	Linear algebra:		
D 04/04	Gauss/Gauss-Jordan elimination.		
R 01/31	Linear algebra:	Ch. 6	
T 00/05	LU; SVD; Banded Matrices.		
1 02/05	Linear algebra:	Ch. 6	
	2 nd order ODE primer.		
D 02/07	Iterative Methods, Jacobi, Gauss-Seidel, SOR.		10000
R 02/07	KOOTS:	Cn. 4	HWUI due
T 02/12	Secant, disection, bracketing, Dekker, Brent.		
1 02/12	KOOTS:	Cn. 4	
R 02/14		Ch E	
102/14	Transzoidal Simpson open-formulas error estimation	CII. 5	
T 02/19	Integration: Quadrature, N>1 dimensions	Ch 5	
R 02/21	Workflow design: accelerating throughout and scientific discovery		
T 02/26	Research Computing: From microscope to manuscript, benefits of		
	research computing (Dr. Ihamba UNM)		
R 02/28	Figensystems:	Ch 7	HW02 due
	(Inverse) Power method: orthogonal subspaces.		111102 000
T 03/05	Eigensystems:	Ch. 7	
	Jacobi method: tridiagonal matrices: QM HOSC: QM Infinite well.		
R 03/07	Eigensystems:	Ch. 7	
	QR/QL method.		
T 03/12	Ordinary differential equations:	Ch. 8	
	Euler method.		
	Velocity-Verlet.		
	Leapfrog algorithm.		
	Checking results: Conservation of energy.		
R 03/14	Ordinary differential equations:	Ch. 8	TAKE HOME
	Runge-Kutta method.		MIDTERM
	Time step control.		
	Classical dynamical systems.		
T 03/19	Two point boundary value problems:	Ch. 9	

	"Shooting method".		
R 03/21	Two point boundary value problems:	Ch. 9	HW03 due.
	Examples.		TAKE HOME
			EXAM DUE
T 03/26	Spring Break – no class		
R 03/28	Spring Break – no class		
T 04/02	Partial differential equations:	Ch. 10	
	Elliptical: 1-D Diffusion equation; FTCS; BTCS; Crank-Nicholson.		
R 04/04	Partial differential equations:	Ch. 10	
	Parabolic; 1-D Heat equation; Time-dependent Schroedinger		
	equation.		
T 04/09	Monte Carlo:	Ch. 11	
	Random number generators. Radioactive decay.		
R 04/11	Monte Carlo:	Ch. 11 + 12	HW04 due
	Integration; error estimates.		
T 04/16	Monte Carlo:	Ch. 12 + 13	
	Fundamental Theorem of sampling; direct sampling; rejection.		
R 04/18	Monte Carlo:		
	Maxwell's equations and 3D printing of ferromagnets.		
T 04/23	Min/Max extrema of function.		
	Brent's algorithm.		
	Steepest descent; Conjugate gradient.		
	Variable metric.		
R 04/25	Global minimization: Simulated Annealing.		
	Fast Fourier Transform:		
T 04/30	Sampling theorem: Nyquist frequency; sampling theorem.		HW05 due
	Fourier interpolation.		
R 05/02	Course summary.		
R 05/09	10:30 – 12:30; Final exam; cumulative, covering all lecture material		
	and homeworks; GN 218A Gardiner Hall.		
T 05/14	Final Grades are due		